
Git is a great design!

Aur Saraf, aur@sarafconsulting.com

in which we will become git experts and better software
architects in one talk

mailto:aur@sarafconsulting.com

git ate the world

what is git

a git repository is a distributed, versioned
store of directory trees... with a version

control system implemented over it

how git works

a repository is a key-value object store
where the key is the object's

cryptographic hash

this is trivial to synchronize between
instances

objects point to other objects by their
keys, which means an object's hash

specifies the entire tree

which is the server and which is the client?

there is no "server" or "client"

there is just... "repository"

note on hash collisions:

cryptographic hash
collisions never happen

note on hash collisions:

cryptographic hash
collisions never happen

note on hash collisions:

thanks for attending my TED talk

version control with git

a version is called a commit and usually has
one or more parents

a branch is a commit label that moves,
a tag is a commit label that doesn't

$ ls .git

COMMIT_EDITMSG HEAD ORIG_HEAD config description

hooks/ index info/ logs/ objects/

packed-refs refs/

$ cat .git/HEAD

ref: refs/heads/aur

$ ls .git/refs/

heads remotes tags

$ ls .git/refs/heads

aur main

$ cat .git/refs/heads/aur

b9172b443f61719d3fde1a70b5191a7f5e82d057

git commit -m "added link to
readme" README.md

(1) creates a new commit pointing to
the current HEAD (2) write hash of new

commit to branch file

objects are stored in objects/ by their hash
$ cat .git/refs/heads/aur

b9172b443f61719d3fde1a70b5191a7f5e82d057

$ ls .git/objects/

00/ 04/ 09/ 13/ 19/ 21/ 28/ 2b/ 3b/ 3d/ 4c/ 51/ 54/ 57/ 5b/

...

info/ pack/

$ ls .git/objects/b9

172b443f61719d3fde1a70b5191a7f5e82d057

$ git cat-file -p b9172b443f61719d3fde1a70b5191a7f5e82d057

tree 7faf7f4956a3265a4446f2e87c845630ac0d14eb

parent d62f04ec1ebe4e02e775f24c2434fb04bce26a76

author Aur Saraf <aur@sarafconsulting.com> 1662287945 +0300

committer Aur Saraf <sonoflilit@gmail.com> 1662287945 +0300

maxpool2d

objects are stored in objects/ by their hash
$ git cat-file -p b9172b443f61719d3fde1a70b5191a7f5e82d057

tree 7faf7f4956a3265a4446f2e87c845630ac0d14eb

...

$ git cat-file -p 7faf7f4956a3265a4446f2e87c845630ac0d14eb

100644 blob bcc6aeb5fd0885e4e0fe981e49890c2f106250cd .gitignore

100644 blob 20cb8b8e1d53e333696acc79fe045ae7e9b0aa74 .markdownlint.json

040000 tree dbb3afc8121bd6a314b3aa1e3711877630e91729 .vscode

100644 blob cca8123bc494fd36389a6b48a267b138b3db18d7 README.md

...

$ git cat-file -p cca8123bc494fd36389a6b48a267b138b3db18d7

MLAB August 2022

Current Status and List of Significant Changes

Last updated Aug 5 2022

...

git is divided to "plumbing" and "porcelain"

"porcelain" refers to user-friendly
commands that expose a version control UI

over the distributed dirtree store,
historically simple shell scripts that invoke

plumbing

how to use git

the "index" or "staging" is like a "shopping
cart" of changes, you gradually add

changes and then commit them into a...
commit

git add, git reset add/remove from index

git commit create commit from index

git status see index

git log see commit list/tree

git diff compare versions of objects

git merge make a commit based on HEAD and another ref
(might need to resolve conflicts, default merge algo is stupid)

git rebase new commits by applying commits' diffs on top of
ref (might need to resolve conflicts after each commits)

git rebase -i HEAD^^^ edit last 3 commits

git fetch synchronize from remote

git pull fetch then merge

git push synchronize to remote

git branch create/remove/edit commit a branch points to

git switch move to different branch (with -C: to new branch)

git has many ways to name objects:

hash

label, tag, HEAD

ref^ - first parent of ref

ref^^^ - first great-grandparent

ref@{2} - what ref used to point to 2
changes ago

ref:path/to/obj - file object

git reflog show all hashes labels/tags used to point to

messed things up real bad?

e1b23ba (HEAD -> master) HEAD@{0}: commit: src -> _ke/src, build with setuptools_rust

...

b776923 HEAD@{7}: commit: README: minor rearrangement

1c1c6fc HEAD@{8}: rebase (finish): returning to refs/heads/master

1c1c6fc HEAD@{9}: rebase (pick): README: cheat sheet, move stuff around, remove bad examples

b2d242b HEAD@{10}: rebase (pick): better demo gif

e4ad7f3 HEAD@{11}: rebase (pick): deleted some stale files

07d71a3 HEAD@{12}: rebase (pick): README: architecture, contributing, improve example

0d35d74 HEAD@{13}: rebase (start): checkout refs/remotes/origin/master

740d77b HEAD@{14}: commit: README: cheat sheet, move stuff around, remove bad examples

advanced things you should know exist:

reset --soft, reset --hard

precommit hooks

pgp signatures

submodules

filter-branch

large file storage

git is a great design

Good design chooses the right data
structures to represent the problem

Great design chooses the right data
structure to represent the problem

Who Am I

aur@sarafconsulting.com

mailto:aur@sarafconsulting.com

Who Am I

bonus: my git aliases
alias s='git status'

alias d='git diff'

alias dc='git diff --cached'

alias c='git commit -m'

alias ca='git commit -am'

alias a='git add -p'

alias u='git checkout -p'

alias l="git log --graph --oneline --decorate --all --
pretty=format:'%Cgreen%ad%Creset %C(auto)%h%d %s %C(bold
blue)%aN %Cred%G?%GS%Creset' --date=format-local:'%Y-%m-
%d %H:%M'"

alias lx="git log --graph --oneline --decorate --
pretty=format:'%Cgreen%ad%Creset %C(auto)%h%d %s %C(bold
blue)%aN %Cred%G?%GT%Creset' --date=format-local:'%Y-%m-
%d %H:%M'"

bonus: my git aliases

